Noradrenaline increases glucose transport into brown adipocytes in culture by a mechanism different from that of insulin.
نویسندگان
چکیده
Glucose uptake into brown adipose tissue has been shown to be enhanced directly by noradrenaline (norepinephrine) released from sympathetic nerves. In this study we characterized the glucose transport system in cultured brown adipocytes, which responds to noradrenaline as well as insulin, and analysed the mechanism underlying the noradrenaline-induced increase in glucose transport. Insulin increased 2-deoxyglucose (dGlc) uptake progressively at concentrations from 10(-11) to 10(-6) M, with maximal stimulation at 10(-7) M. Noradrenaline concentrations ranging from 10(-8) to 10(-6) M also enhanced dGlc uptake, even in the absence of insulin. The effects of noradrenaline and insulin on dGlc uptake were additive. The stimulatory effect of noradrenaline was mimicked by the beta3-adrenergic agonist, BRL37344, at concentrations two orders lower than noradrenaline. Dibutyryl cyclic AMP also mimicked the stimulatory effect of noradrenaline, and the antagonist of cyclic AMP, cyclic AMP-S Rp-isomer, blocked the enhancement of glucose uptake due to noradrenaline. Furthermore Western blot analysis with an anti-phosphotyrosine antibody revealed that, in contrast with insulin, noradrenaline apparently does not stimulate intracellular phosphorylation of tyrosine, suggesting that the noradrenaline-induced increase in dGlc uptake depends on elevation of the intracellular cyclic AMP level and not on the signal chain common to insulin. When cells were incubated with insulin, the content of the muscle/adipocyte type of glucose transporter (GLUT4) in the plasma membrane increased, with a corresponding decrease in the amount in the microsomal membrane. In contrast, noradrenaline did not affect the subcellular distribution of GLUT4 or that of the HepG2/erythrocyte type of glucose transporter. Although insulin increased Vmax. and decreased the Km value for glucose uptake, the effect of noradrenaline was restricted to a pronounced decrease in Km. These results suggest that the mechanism by which noradrenaline stimulates glucose transport into brown adipocytes is not due to translocation of GLUT but is probably due to an increase in the intrinsic activity of GLUT, which is mediated by a cyclic AMP-dependent pathway.
منابع مشابه
Noradrenaline stimulates glucose transport in rat brown adipocytes by activating thermogenesis. Evidence that fatty acid activation of mitochondrial respiration enhances glucose transport.
The mechanisms by which noradrenaline, lipolytic agents and long-chain fatty acids stimulate glucose transport were investigated in rat brown adipocytes. Glucose transport was evaluated with tracer D-[U-14C]glucose and cell respiration was measured polarographically. Noradrenaline increased basal oxygen consumption (8-10-fold) and glucose transport (4-5-fold) in a dose-dependent manner, with a ...
متن کاملHormonal regulation of glucose transport in a brown adipose cell preparation isolated from rats that shows a large response to insulin.
Isolated brown adipose cells from rats are prepared whose viability is indicated by the expected stimulation of oxygen consumption by noradrenaline and counter-regulation of this oxygen consumption response by insulin. Insulin stimulates 3-O-methyl-D-glucose transport by approx. 15-fold in the absence of adenosine, and adenosine augments this response at least 2-fold. The insulin-stimulated tra...
متن کاملInsulin resistance of glucose metabolism in isolated brown adipocytes of lactating rats. Evidence for a post-receptor defect in insulin action.
The mechanism responsible for the insulin resistance described in vivo in brown adipose tissue (BAT) of lactating rats was investigated. The effect of insulin on glucose metabolism was studied on isolated brown adipocytes of non-lactating and lactating rats. Insulin stimulation of total glucose metabolism is 50% less in brown adipocytes from lactating than from non-lactating rats. This reflects...
متن کاملUnderstanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach
Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...
متن کاملOkadaic acid activates atypical protein kinase C (zeta/lambda) in rat and 3T3/L1 adipocytes. An apparent requirement for activation of Glut4 translocation and glucose transport.
Okadaic acid, an inhibitor of protein phosphatases 1 and 2A, is known to provoke insulin-like effects on GLUT4 translocation and glucose transport, but the underlying mechanism is obscure. Presently, we found in both rat adipocytes and 3T3/L1 adipocytes that okadaic acid provoked partial insulin-like increases in glucose transport, which were inhibited by phosphatidylinositol (PI) 3-kinase inhi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 314 ( Pt 2) شماره
صفحات -
تاریخ انتشار 1996